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S1. Magnetic Fields Generated by Worm Axon 

A simplified geometry of a giant squid axon is simulated using the LFPy software derived from the 

NEURON software (1–5),  validating the experimental magnitude of the magnetic field generated in the 

vicinity of a neural axon (6), where the diameter and synaptic weight reproduce a current intensity in the 

order of ~100-500 nA similar to the results published in the literature by Suszkiw et al. and Holz et al. (7,8). 

By comparing the in-vivo experimental results obtained by Barry et al. for M. Infundibulum with the 

theoretical simulation illustrated in Fig. S1, it is possible to correlate a similar magnitude of the magnetic 

field, considering an increase of the synaptic strength in accordance with experimental expectations (1,2). 

Therefore, it is possible to validate the efficacy of the theoretical simulation concerning the estimation of 

the magnetic field generated by neural activities, as well as single-neuron action potentials. Fig. S1(a) 

represents the location of the synapse with respect to the position of the sensor, whereas Fig. S1(b) 

illustrates the maximum magnitude of the magnetic field in the order of ~500 pT, and Fig. S1(c) shows a 

synaptic potential ΔVsoma of around 30 mV equivalent to experimental measurements. Furthermore, Fig. 

S1(d) depicts the maximum synaptic current in the order of 150 nA in accordance with experimental results 

available in the literature (7,8). 

 

Figure S1. Giant squid axon simulated in LFPy. (a) Simplified geometry of an axon during stimulation 

through microelectrodes. The sensor, the dipole, and the synapse location are represented by the green, 

orange, and yellow shapes (6). (b) Magnetic field measured along the y-direction of the axon (Hy) in pT. 

(c) Soma potential at the sensor location.  (d) Synaptic current at the sensor location. 
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S2. Electrochemical Analysis of Neuronal Activities 

During an evoked action potential in neuronal regions, diffusion phenomena are limited by the ionic 

transport taking place within the membrane. In addition, in the case of electrode-based neurostimulation 

and sensing, the physiological properties of the neuronal tissue are affected by local nonequilibrium 

perturbations attributed to the direct contact with the metallic plates of the electrode, according to the 

physics described by the Marcus theory for electron transfer (9,10). Furthermore, the heat transfer arising 

from the circulatory system is also responsible for temperature gradients provoking microfluidic effects, 

such as convection and cavitation around the microelectrodes, which causes hydrodynamic perturbations 

in the chemical potential at a distance from the electrode beyond ~10 µm (11–17). Therefore, electrode-

based neurostimulation perturbs the equilibrium of neuronal tissue abating the high-frequency response 

because of impedance effects caused by the direct contact of the neuronal tissue and the cerebrospinal fluid 

with the conductive metallic plate of the implanted microelectrodes. At the surface of the electrode, 

diffusion phenomena limit the ability to sense and stimulate action potentials through implanted non-

contactless microelectrodes in agreement with the Cottrell equation and Fick’s laws of diffusion. The 

derivation of the second Fick’s law of diffusion in terms of concentration is stated as: 

𝐶𝑂𝑋(𝑥, 𝑡) = 𝐶𝑂𝑋
∗ {𝑒𝑟𝑓 [

𝑥

2√𝐷𝑂𝑋𝑡
]} (1), 

For the following boundary conditions: 

{

𝐶𝑂𝑋(∞, 𝑡) = 𝐶𝑂𝑋
∗ = 𝐶𝐵𝑢𝑙𝑘

𝐶𝑂𝑋(𝑥, 𝑡 = 0) = 𝐶𝑂𝑋
∗

𝐶𝑂𝑋(𝑥0, 𝑡 > 0) = 0

 (2), 

Where: 𝑡 is the time, 𝑥 the distance from the electrode; 𝐶𝑂𝑋
∗  is the initial concentration of the oxide species 

derived from the Butler-Volmer equation assumed equal to 𝐶𝐵𝑢𝑙𝑘 in case of an ideally infinite continuous 

system without depletion; 𝐷𝑂𝑋 the diffusivity constant for oxidation reactions in cm2/s; 𝑥0 the initial 

distance from the electrode; 𝑥 the distance from the electrode, and 𝑒𝑟𝑓{∗} represents the error function. The 

same approach is valid for reduction reactions. Setting the distance equal to 𝑥 = √𝐷𝑜𝑥𝑡 and assuming a 

diffusivity constant in the order of  𝐷𝑜𝑥 = 10−5 [cm2/s], it is possible to approximate the concentration as:  

𝐶𝑂𝑋(𝑥, 𝑡) = 𝐶𝑂𝑋
∗ {𝑒𝑟𝑓[0.5]}  ≈ 0.525 𝐶𝑂𝑋

∗  

Therefore, considering 𝑥 = √𝐷𝑜𝑥𝑡, it is possible to estimate the concentration profile as a time-domain 

function for different distances to highlight the temporal and spatial limitations of electrode-based 

stimulation and sensing, as shown in Table S1. The diffusion occurring around the neuronal tissue is 

dependent on the physical properties of the system and the time delay arising from the electronic 

instrumentation. If the sampling period is in the order of ~1µs, it is necessary to sense at a maximum 
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distance of 30 nm to avoid diffusion limitations. Therefore, electrode-based stimulation has a limited 

temporal resolution. The convection phenomena occurring nearby the electrode are provoked by the heat 

transfer arising from the circulatory system and the electrolyte solution, where the neurons are submerged. 

Considering a time resolution of 1 ms, the diffusivity is dominant up to 1 µm, far below the distance to the 

electrode (18). 

Table S1. Temporal limitations of electrical-based stimulation 

Time 1s 1ms 1µs 

Space 30µm 1µm 30nm 

 

Non-contactless electrode-based sensing and stimulation techniques are temporally limited by the ionic 

transport and diffusion phenomena, whereas contactless magnetic stimulation is limited by the permeability 

and permittivity of the system for non-relativistic electromagnetic models according to the Maxwell 

equations. The result is valid for short distances both in planar and spherical electrodes. 
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S3. Graphical Interface. 

The interface in Fig. S2 integrates MATLAB and the NEURON compiler by automatically setting the 

parameters in the file and running the compiler. The current in Fig. S2 counts only the capacitive term and 

does not include further contributions. By changing the membrane capacitance and resistance, it is possible 

to measure the charge response to an action potential, as well as the magnetic field generated by the 

capacitive term according to the Biot-Savart law. The refractory period is estimated when the stimulus 

occurs. The same approach can also be applied for brain sensing. The main advantage of this interface is 

the adaptability for controlling the system through machine-learning techniques to distinguish positive and 

negative action potentials, image processing techniques to map the neuronal geometry, and parallelized 

computing to increase the performance for a network of neuronal cells. In this simulation, the cell 

capacitance is supposed to be 147.11 ± 13.29 pF (19). The radius of the axon is in accordance with the 

results published in the literature (20–22). It is possible to change the main parameters such as the 

capacitance, the resistance, the inductance of the micro-coil, and the current pulse specifics, as well as the 

time duration, the membrane characteristics, and the resting potential. The radius of the axon is considered 

in the order of ~100 µm. For standard hippocampal axons (0.1 µm), it translates to a maximum magnetic 

field in the order of 2–3 nT for a bundle of neuronal cells. The map of the electric field is derived from Saha 

et al. (23). 

 

Figure S2. MATLAB graphical interface to simulate the parameters deriving from NEURON (23,24).  
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S4. Source Code LFPy simulation available on the GitHub LFPy page under GNU license. 

The following modifications are implemented to store the simulation data: 

 

#for i in range(-500, 500, 100): 

for j in range(-500, 500, 50): 

  for n in range(-1200,400, 50): 

    # Define sensor site, instantiate MEG object, get transformation matrix 

    sensor_locations = np.array([[n, 0, j]]) 

    meg = MEG(sensor_locations) 

    M = meg.get_transformation_matrix(dipole_location) 

    # compute the magnetic signal in a single sensor location: 

    H = M @ current_dipole_moment.data 

 #   # Open the file in append & read mode ('a+') 

 #   with open("t.csv", "ab") as myfile: 

 #     np.savetxt(myfile, cell.tvec, delimiter=',') 

 #   with open("V.csv", "ab") as myfile: 

 #     np.savetxt(myfile, cell.somav, delimiter=',') 

 #   with open("I_syn.csv", "ab") as myfile: 

 #     np.savetxt(myfile, syn.i, delimiter=',') 

 #   with open("H.csv", "ab") as myfile: 

 #     np.savetxt(myfile, H[0].T, delimiter=',') 

 

#np.savetxt('V.csv', cell.somav, delimiter=',') 

#np.savetxt('I_syn.csv', syn.i , delimiter=',') 

#np.savetxt('myfile.csv', H[0].T, delimiter=',') 

 

The following code, excluding the part to extract the data, is publicly available under the GNU General 

Public License v3 at https://github.com/LFPy/LFPy/blob/master/LFPy/eegmegcalc.py, Copyright 2020 

Computational Neuroscience Group NMBU (1,2). The network of neuronal cells is based on the file 

example_network.py in LFPy, copyright 2017 Computational Neuroscience Group NMBU under the GNU 

General Public License. The following code is publicly available under the GNU General Public License 

v3 at: https://github.com/LFPy/LFPy/blob/master/examples/ example_network/example_network.py (1,2).  
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Source Code LFPy simulation available on the GitHub LFPy page under GNU license. 

 

The following modification are implemented to store the simulation data: 

 

if i == 2 & j==2: 

    np.savetxt('tz.csv', t[inds], delimiter=',') 

    np.savetxt('pz.csv', current_dipole_moment.data[name][i, inds], delimiter=',') 

with open("x.csv", "ab") as myfile: 

  np.savetxt(myfile, [cell.x[1, 0], cell.x[-1, -1]], delimiter=',') 

with open("y.csv", "ab") as myfile: 

  np.savetxt(myfile, [cell.y[1, 0], cell.y[-1, -1]], delimiter=',') 

with open("z.csv", "ab") as myfile: 

  np.savetxt(myfile, [cell.z[1, 0], cell.z[-1, -1]], delimiter=',') 

 

The following code, excluding the part to extract the data, is publicly available under the GNU General 

Public License at: https://github.com/LFPy/LFPy/blob/master/examples/example_network/example_ 

network.py, Copyright 2017 Computational Neuroscience Group, NMBU. LFPy is used to run the code 

(1,2). Once the vectors are extracted, MATLAB is used to plot the data. 
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